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1. Introduction

Simulating the dynamics of a system with several rigid bodies and with joint, contact
(noninterpenetration), and friction constraints is an important part of virtual reality and
robotics simulations.

If the simulation has only joint constraints, then the problem is a differential algebraic
equation (DAE) [21, 8]. However, the nonsmooth nature of the noninterpenetration and
friction constraints requires the use of specialized techniques. Approaches used in the
past for simulating rigid multibody dynamics with contact and friction include piecewise
DAE approaches [21], acceleration-force linear complementarity problem (LCP) approaches
[11, 17], penalty approaches [16, 28], and velocity-impulse LCP-based time-stepping methods
[29, 30, 3, 4].

In this work we use the last approach, which has the advantage that it does not suffer from
the lack of existence of a solution that could appear in the first two approaches [11, 30]. It also
does not suffer from the artificial stiffness that is introduced by the third approach.

On the other hand, some of the features that are well studied and well understood
for numerical schemes for DAE, such as accommodation of stiff forces or constraint
stabilization, cannot be readily extended to the velocity-impulse LCP approach. For example,
accommodating stiff forces by implicit methods may require the resolution of a nonlinear
complementarity problem whose solution set is likely nonconvex in some cases, since it is
nonconvex for linear complementarity formulations [1]. This situation can be remedied by
using a linearized backward Euler approach, which results in an unconditionally consistent
linear complementarity problem for the case where the stiffness is generated by springs and
dampers [2].

In this work we discuss the problem of achieving geometrical (noninterpenetration and
joint) constraint stabilization for time-stepping methods for rigid multibody dynamics with
contact, joints, and friction. The problem has been tackled by using nonlinear complementarity
problems [29], an LCP followed by a nonlinear projection approach that includes nonlinear
inequality constraints [2], and a postprocessing method [12] that uses one potentially nonconvex
LCP based on the stiff method developed in [2] followed by one convex LCP for constraint
stabilization. When applied to joint-only systems, the method from [12] belongs to the set of
postprocessing methods defined in [7, 9].

In this work we show that geometrical constraint stabilization for rigid multibody dynamics
simulations with joints, contact, and friction can be achieved while solving only one LCP per
step, of comparable complexity to the first LCP in [12] and to the LCP in [3, 2]. This is
done by choosing a free term (right-hand side) of the LCP that depends on the geometrical
constraint infeasibility. Therefore, the infeasibility will affect the energy balance of the time-
stepping scheme. The main challenge is to prove that, under certain assumptions, the effect of
the infeasibility over the solution of the LCP goes to 0 as the time step goes to 0, uniformly
over the entire time-simulation interval. We address this challenge in Section 4.

To our knowledge, our work is novel in several respects.

• We provide an analysis of a constraint stabilization mechanism where the subproblem
is an LCP. All other approaches involve either additional nonlinear projections or apply
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CONSTRAINT STABILIZATION FOR CONTACT AND FRICTION DYNAMICS SIMULATION 3

only to DAE, where the main subproblems are either linear or nonlinear systems of
equations.

• We show that a rigid multibody simulation framework can be defined in such a fashion
that the simulation can progress with a constant time step and remain stable for
sufficiently small time step, while solving only one LCP per time step, even when totally
plastic collisions occur.
This is very different from the integrate-detect-restart strategy that is the basis of most
current methods of rigid multibody dynamics with contact and friction simulations
[14, 20, 11, 3, 29]. Such approaches solve a subproblem of a complexity comparable to
the one that is solved here, based on an initial approximation of the active set, and then
attempt to advance the simulation by one time step. If one event (collision or contact
takeoff) is detected, then the simulation is backtracked up to the event, the active set
is updated, and the simulation is restarted. The problem is that the number of linear
complementarity problems to be solved per unit of simulation time is unpredictable,
since there is no apriori bound to the number of collisions that can occur per unit of
simulation time. This problem is related to the one that appears in simulating bouncing
balls with this approach [19], which we do not address here because we consider only
totally plastic collisions.
Since in the absence of contacts and friction our approach reduces to an Euler method,
the method presented here cannot exceed order 1. As long as we do not detect the events
and we do not backtrack, we cannot expect to extend the method to orders higher
than one even if we change the numerical scheme. Nevertheless, we believe that such
an approach is valuable from a practical perspective, when many collisions are expected
over a small time interval (as happens on a pool table, for example) for which high-order
integration may not make sense because of the extreme sensitivity of the outcome to
the many parameters involved. Stabilized, low-order methods that solve a fixed number
of subproblems per step like our approach may be very useful when a human is in the
loop (interactive simulation), where the main goal is to provide an approximation of
the dynamics that is acceptable, within the tolerance of human perception, with a low
amount of computational effort.

• When our approach is reduced to the DAE case, which appears when only joint
constraints are considered, we obtain an order 1 method that achieves constraint
stabilization while solving only one linear system per step and that does not depend
on any parameter tuning. This may also be a novel result. For example, applying the
postprocessing method [7] to DAE in our setup would require the solution of two linear
systems per step.
The postprocessing method can be implemented to use only one matrix per step. When
a direct method is used to solve the linear systems that appear in our method and
the postprocessing method then only one matrix factorization per step is needed by
either method and the computational efforts are comparable. If an iterative method
is used, however, then the postprocessing method may need, at least in the worst
case, twice as much computational effort as our method. Moreover, the reduction of
computational effort, that appears in the direct solver case for DAE, does not extend
to the postprocessing method described in [12] when inequality (contact and friction)
constraints are considered, since an inequality-constrained quadratic program cannot (in
general) be re-solved at a low computational cost if its right-hand side is changed.
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4 M. ANITESCU AND G. D. HART

When this paper was in the final stages of completion, we became aware of a method
based on [3] that uses a constraint stabilization approach that is similar to the one discussed
here but that does depend on an additional parameter. The paper [13] contains no proof
of stabilization, although it contains extensive numerical validation for realistic robot grasp
stability applications.

In this work we do not address the issue of convergence as the time step goes to 0, which for
previous linear-complementarity-based schemes [29, 3] was proved in a differential inclusion
sense [30]. Existence of classical solutions for the continuous time problem does not hold in
general [11, 30].

The paper is organized as follows. In Section 2 we introduce the time-stepping scheme based
on the LCP, and we discuss relevant properties of strictly convex quadratic programs and
their connection to the LCP. In Section 3 we prove a stability property of the solution of
certain quadratic programs with respect to their right-hand side. In Section 4 we prove our
main stabilization result. In Section 5 we discuss the behavior of the method when applied
to a problem with joint-only constraints. In Section 6 we present numerical validation of
the concepts described and proved in the paper. In the Appendix we prove several results
concerning the behavior of recursive inequalities that are relevant to the proofs in Section 4.

2. The Linear Complementarity Subproblem of the Time-Stepping Scheme

In this section, we review a velocity-impulse LCP-based time-stepping scheme that uses an
Euler discretization [3, 29]. In the following, q and v constitute, respectively, the generalized
position and generalized velocity vector of a system of several bodies [21].

2.1. Model Constraints

Throughout this subsection we make use of complementarity notation. If a, b ∈ RI , we say
that a is complementary to b, and we denote it by a ⊥ b or a ≥ 0 ⊥ b ≥ 0 if a ≥ 0, b ≥ 0, and
ab = 0.

2.1.1. Geometrical Constraints Joint constraints (2.1) and noninterpenetration constraints
(2.3) involve only the position variable and depend on the shape of the bodies and the type of
constraints involved. We call them geometrical constraints.

Joint Constraints. Joint constraints are described by the equations

Θ(i)(q) = 0, i = 1, 2, . . . ,m . (2.1)

Here, Θ(i)(q) are sufficiently smooth functions. We denote by ν(i)(q) the gradient of the
corresponding function, or

ν(i)(q) = ∇qΘ
(i)(q), i = 1, 2, . . . ,m. (2.2)

The impulse exerted by a joint on the system is c
(i)
ν ν(i)(q), where c

(i)
ν is a scalar related to the

Lagrange multiplier of classical constrained dynamics [21].

Noninterpenetration Constraints. Noninterpenetration constraints are defined in terms
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CONSTRAINT STABILIZATION FOR CONTACT AND FRICTION DYNAMICS SIMULATION 5

of a continuous signed distance function between the two bodies Φ(j)(q) [5]. The
noninterpenetration constraints become

Φ(j)(q) ≥ 0, j = 1, 2, . . . , p. (2.3)

The function Φ(j)(q) is generally not differentiable everywhere. In Section 4 we discuss sufficient
conditions for local differentiability of Φ(j)(q). In the following, we may refer to j as the contact
j, although the contact is truly active only when Φ(j)(q) = 0. We denote the normal at contact
(j) by

n(j)(q) = ∇qΦ
(j)(q), j = 1, 2, . . . , p. (2.4)

When the contact is active, it can exert a compressive normal impulse, c
(j)
n n(j)(q), on the

system, which is quantified by requiring c
(j)
n ≥ 0. The fact that the contact must be active

before a nonzero compression impulse can act is expressed by the complementarity constraint

Φ(j)(q) ≥ 0 ⊥ c(j)n ≥ 0, j = 1, 2, . . . , p. (2.5)

2.1.2. Frictional Constraints Frictional constraints are expressed by means of a discretization
of the Coulomb friction cone [2, 3, 29]. For a contact j ∈ {1, 2, . . . , p}, we take a collection

of coplanar vectors d
(j)
i (q), i = 1, 2, . . . ,m

(j)
C , which span the plane tangent at the contact

(though the plane may cease to be tangent to the contact normal when mapped in generalized

coordinates [5]). The convex cover of the vectors d
(j)
i (q) should approximate the transversal

shape of the friction cone. In two-dimensional mechanics, the tangent plane is one dimensional,

its transversal shape is a segment, and only two such vectors d
(j)
1 (q) and d

(j)
2 (q) are needed

in this formulation. We denote by D(j)(q) a matrix whose columns are d
(j)
i (q) 6= 0,

i = 1, 2, . . . ,m
(j)
C , that is, D(j)(q) =

[
d
(j)
1 (q), d

(j)
2 (q), . . . , d

(j)

m
(j)
C

(q)

]
. A tangential impulse is

∑m
(j)
C

i=1 β
(j)
i d

(j)
i (q), where β

(j)
i ≥ 0, i = 1, 2, . . . ,m

(j)
C . We assume that the tangential contact

description is balanced, that is,

∀1 ≤ i ≤ m
(j)
C , ∃k, 1 ≤ k ≤ m

(j)
C such that d

(j)
i (q) = −d(j)

k (q). (2.6)

The friction model ensures maximum dissipation for given normal impulse c
(j)
n and velocity

v and guarantees that the total contact force is inside the discretized cone. We express this
model as

D(j)T

(q)v + λ(j)e(j) ≥ 0 ⊥ β(j) ≥ 0,

µc
(j)
n − e(j)

T

β(j) ≥ 0 ⊥ λ(j) ≥ 0.
(2.7)

Here e(j) is a vector of ones of dimension m
(j)
C , e(j) = (1, 1, . . . , 1)

T
, µ(j) ≥ 0 is the Coulomb

friction parameter, and β(j) is the vector of tangential impulses β(j) =

(
β

(j)
1 , β

(j)
2 , . . . , β

(j)

m
(j)
C

)T

.

The additional variable λ(j) ≥ 0 is approximately equal to the norm of the tangential velocity

at the contact, if there is relative motion at the contact, or
∣∣∣
∣∣∣D(q)(j)

T

v
∣∣∣
∣∣∣ 6= 0 [3, 29].

Notation. We denote by M(q) the symmetric, positive definite mass matrix of the system in
the generalized coordinates q and by k(t, q, v) the external force. All quantities described in
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6 M. ANITESCU AND G. D. HART

this section associated with contact j are denoted by the superscript (j). When we use a vector
or matrix norm whose index is not specified, it is the 2 norm.

2.2. The Linear Complementarity Problem

Let hl > 0 be the time step at time t(l), when the system is at position q(l) and velocity v(l).
We have that hl = t(l+1)− t(l). We choose the new position to be q(l+1) = q(l) +hlv

(l+1), where
v(l+1) is determined by enforcing the simulation constraints.

The geometrical constraints are enforced at the velocity level by linearization. For joint
constraints the linearization leads to

Θ(i)(q(l))+hl∇qΘ
(i)T

(q(l))v(l+1) = Θ(i)(q(l))+hlν
(i)T

(q(l))v(l+1) = 0, i = 1, 2, . . . ,m. (2.8)

For a noninterpenetration constraint of index j, Φ(j)(q) ≥ 0, linearization at q(l) for one

time step amounts to Φ(j)(q(l)) + hl∇qΦ
(j)T

(q(l))v(l+1) ≥ 0, that is, after including the
complementarity constraints (2.5),

∇qΦ
(j)T

(q(l))v(l+1) +
Φ(j)(q(l))

hl

≥ 0 ⊥ c(j)n ≥ 0. (2.9)

For computational efficiency, only the contacts that are imminently active are included in
the dynamical resolution and linearized, and their set is denoted by A. One practical way
of determining A is by including all j for which Φ(j)(q) ≤ ε̂, where ε̂ is a sufficiently small
quantity.

If a collision occurs, then a collision resolution, possibly with energy restitution, needs to
be applied [3]. In our setup a collision occurs at step l for a contact j if the first inequality in
(2.9) is satisfied with equality, and at step l − 1 it was satisfied as a strict inequality.

In this work we assume that no energy lost during collision is restituted; hence we avoid the
need to consider a compression LCP followed by decompression LCP [3]. The relation (2.9) is
sufficient to accommodate totally plastic collisions.

To completely define the LCP subproblem, we use an Euler discretization of Newton’s law,
which results in the following equation:

M(q(l))
(
v(l+1) − v(l)

)
= hlk

(
t(l), q(l), v(l)

)
+

m∑

i=1

c(i)ν ν(i)(q(l))+
∑

j∈A


c(j)n n(j)(q(l)) +

m
(j)
C∑

i=1

β
(j)
i d

(j)
i (q(l))


 .

After collecting all the constraints introduced above, with the geometrical constraints
replaced by their linearized versions (2.8) and (2.9), we obtain the following mixed LCP:




M (l) −ν̃ −ñ −D̃ 0
ν̃T 0 0 0 0
ñT 0 0 0 0

D̃T 0 0 0 Ẽ
0 0 µ̃ −ẼT 0







v(l+1)

cν
cn
β̃
λ


+




−Mv(l) − hlk
(l)

Υ
∆
0
0


 =




0
0
ρ
σ̃
ζ


 (2.10)

[
cn
β̃
λ

]T [
ρ
σ̃
ζ

]
= 0,

[
cn
β̃
λ

]
≥ 0,

[
ρ
σ̃
ζ

]
≥ 0 . (2.11)
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CONSTRAINT STABILIZATION FOR CONTACT AND FRICTION DYNAMICS SIMULATION 7

Here ν̃ = [ν(1), ν(2), . . . , ν(m)], cν = [c
(1)
ν , c

(2)
ν , . . . , c

(m)
ν ]T , ñ = [n(j1), n(j1), . . . , n(js)],

cn = [c
(j1)
n , c

(j2)
n , . . . , c

(js)
n ]T , β̃ = [β(j1)T , β(j2)T , . . . , β(js)T ]T , D̃ = [D(j1), D(j2), . . . , D(js)],

λ = [λ(j1), λ(j2), . . . , λ(js)]T , µ̃ = diag(µ(j1), µ(j2), . . . , µ(js))T , Υ = 1
h

(
Θ(1),Θ(2), . . . ,Θ(m)

)T
,

∆ = 1
h

(
Φ(j1),Φ(j2), . . . ,Φ(js)

)T
and

Ẽ =




e(j1) 0 0 · · · 0
0 e(j2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · e(js)




are the lumped LCP data, and A = {j1, j2, . . . , js} are the active contact constraints. The
vector inequalities in (2.11) are to be understood componentwise. We use the ˜ notation to
indicate that the quantity is obtained by properly adjoining blocks that are relevant to the
aggregate joint or contact constraints. The problem is called mixed LCP because it contains
both equality and complementarity constraints.

To simplify the presentation, we have not explicitly included the dependence of the
parameters in (2.10–2.11) on q(l). Also, M (l) = M(q(l)) is the value of the mass matrix at

time t(l), and k(l) = k(t(l), q(l), v(l)) represents the external force at time t(l). We denote k̂(l)

as follows:

k̂(l) = −Mv(l) − hlk
(l).

We note that a similar method, also based on the algorithm in [3], has been used in [13].
Instead of ∆ and Υ in (2.10), however, that method uses the quantities

∆̂ = γ∆, and Υ̂ = γΥ (2.12)

where 0 < γ < 1 is a parameter.

2.3. A convex quadratic program that is locally equivalent to the LCP (2.10–2.11)

The key observation in obtaining the geometrical constraint stabilization results is that a
velocity solution of (2.10)–(2.11) is also the solution of the strictly convex quadratic program
(2.13) whose right-hand side depends on that particular solution of (2.10)–(2.11) [1]. This
quadratic program (2.13) is only locally equivalent to (2.10–2.11), namely, at that particular
solution of (2.13).

Although we do not use this quadratic program (2.13) to determine the velocity (and in
effect we cannot, since its right-hand side depends on the unknown velocity), it is a useful tool
for proving our results. For completeness, we include a proof of the local equivalence, which is
different from the one in [1].

Theorem 2.1. Consider a solution
(
v(l+1), cν , cn, β̃, λ

)
of (2.10–2.11). Define Γ = µ̃λ. Then

v(l+1) is a solution of the quadratic program

minv
1
2v

TM (l)v + k̂(l)T

v

subject to n(j)T

v + µ(j)d
(j)T

i v ≥ −
(
Γ(j) + ∆(j)

)
, j ∈ A, i = 1, 2, . . . ,m

(j)
C

ν(i)T

v = −Υ(i), i = 1, 2, . . . ,m.

(2.13)
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8 M. ANITESCU AND G. D. HART

Note An alternative way of representing the quadratic program (2.13) is by aggregating the
data corresponding to one contact j in a block to obtain the following quadratic program:

minv
1
2v

TM (l)v + k̂(l)T

v

subject to e(j)n(j)T

v + µ(j)D(j)T

v ≥ −
(
Γ(j) + ∆(j)

)
e(j), j ∈ A

ν(i)T

v = −Υ(i), i = 1, 2, . . . ,m.

(2.14)

Proof To simplify the presentation, we do not include in the proof the index l of the current
time step. Within this proof, we therefore denote v(l) by v and M (l) by M .

We first show that from any solution
(
v(l+1), cν , cn, β̃, λ

)
of (2.10–2.11), we can construct

another solution
(
v(l+1), cν , cn, β̃∗, λ

)
of (2.10)–(2.11) that satisfies, for any j ∈ A,

µ(j)c(j)n =

m
(j)
C∑

i=1

β
∗(j)
i . (2.15)

We fix one active contact constraint index j∗ ∈ A. The part of (2.10–2.11) that is influenced
by the tangential impulse at contact (j∗), β(j∗) consists of the equations

Mv −
m∑

i=1

c(i)ν ν(i) −
∑

j∈A

c(j)n n(j) −
∑

j∈A

m
(j)
C∑

i=1

β
(j)
i d

(j)
i = −k̂ (2.16)

λ(j∗) + dT (j∗)

i v ≥ 0 ⊥ β
(j∗)
i ≥ 0, i = 1, 2, . . . ,m

(j∗)
C (2.17)

µ(j∗)c(j
∗)

n −
m

(j∗)
C∑

i=1

β
(j∗)
i ≥ 0 ⊥ λ(j∗) ≥ 0. (2.18)

We have two cases. If λ(j∗) > 0, then from (2.18) we have that

µ(j∗)c(j
∗)

n =

m
(j∗)
C∑

i=1

β
(j∗)
i ,

and (2.15) is satisfied by simply choosing β∗(j∗) = β(j∗) and not changing anything. Assume
now that λ(j∗) = 0 and that

ζ(j∗) = µ(j∗)c(j
∗)

n −
m

(j∗)
C∑

i=1

β
(j∗)
i > 0

(since the case ζ(j∗) = 0 reduces to the one already analyzed). We define

β
∗(j∗)
i = β

(j∗)
i +

ζ(j∗)

m
(j∗)
C

> 0, i = 1, 2, . . . ,m
(j∗)
C ,

which clearly leads to (2.15) being satisfied.
Since λ(j∗) = 0, we have that (2.18) is also satisfied when β(j∗) is replaced by β∗(j∗).

Also, since the friction cone approximation is balanced, we obtain from (2.6) and (2.17) that

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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CONSTRAINT STABILIZATION FOR CONTACT AND FRICTION DYNAMICS SIMULATION 9

d
(j∗)T

i v ≥ 0 and that −d(j∗)T

i v ≥ 0 for any i = 1, 2, . . . ,m
(j∗)
C , which implies that d

(j∗)T

i v = 0

for i = 1, 2, . . . ,m
(j∗)
C . Therefore β

∗(j∗)
i satisfies (2.17) as well for i = 1, 2, . . . ,m

(j∗)
C . Finally,

from (2.6) we obtain that

m
(j∗)
C∑

i=1

d
(j∗)
i = 0,

which implies, from the definition of β
∗(j∗)
i that

m
(j∗)
C∑

i=1

β
(j∗)
i d

(j)
i =

m
(j∗)
C∑

i=1

β
(j∗)
i d

(j)
i +

ζ(j∗)

m
(j∗)
C

m
(j∗)
C∑

i=1

d
(j∗)
i =

m
(j∗)
C∑

i=1

β
(∗j∗)
i d

(j)
i .

Using the last equation in (2.16), we obtain that (2.16) continues to be satisfied, after we

replace β
(j∗)
i by β

∗(j∗)
i .

Using this argument for all j∗ ∈ A, we obtain a solution of (2.10)–(2.11),(
v(l+1), cν , cn, β̃∗, λ

)
, that satisfies (2.15). To simplify the notation, we assume that (2.15)

is satisfied by the given solution in our assumption, that is, β̃ = β̃∗, and we proceed to prove
the rest of the claim.

For a contact j ∈ A, the constraints in (2.10–2.11) are

n(j)T

v − µ(j)λ(j) + Γ(j) + ∆(j) ≥ 0 ⊥ c(j)n ≥ 0 (2.19)

λ(j) + d
(j)T

i v ≥ 0 ⊥ β
(j)
i ≥ 0, i = 1, 2, . . . ,m

(j)
C (2.20)

µ(j)c(j)n −
m

(j)
C∑

i=1

β
(j)
i ≥ 0 ⊥ λ(j) ≥ 0, (2.21)

where we used the definition in the assumption that Γ(j) = µ(j)λ(j). We claim that (2.19–2.21)
imply that

n(j)T

v + µ(j)d
(j)T

i v + Γ(j) + ∆(j) ≥ 0 ⊥ β
(j)
i ≥ 0, i = 1, 2, . . . ,m

(j)
C . (2.22)

We have two cases to consider. If c
(j)
n = 0, then from (2.20) and (2.21) we must have that

β
(j)
i = 0 for i = 1, 2, . . . ,m

(j)
C . Multiplying the left side of the equation (2.20) by µ(j) and

adding to it the equation (2.19) for i = 1, 2, . . . ,m
(j)
C , we obtain that (2.22) holds.

If c
(j)
n > 0, then we obtain from (2.19) that

n(j)T

v − µ(j)λ(j) + Γ(j) + ∆(j) = 0.

Again, multiplying (2.20) by µ(j) and adding to it the previous relation, we obtain (2.22).

So (2.22) must hold in any case. To prove our theorem in full generality, we now need to
separate the active set in two subsets:

A1 =
{
j ∈ A|µ(j) > 0

}
, A2 =

{
j ∈ A|µ(j) = 0

}
.
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10 M. ANITESCU AND G. D. HART

Whenever j ∈ A1, and using (2.15) with β̃ = β̃∗, we can rewrite the reaction impulse in
(2.10)–(2.11) corresponding to the contact (j) as

c(j)n n(j) +

m
(j)
C∑

i=1

β
(j)
i d

(j)
i =

m
(j)
C∑

i=1

β
(j)
i

µ(j)

(
n(j) + µ(j)d

(j)
i

)
.

Using now (2.10–2.11), (2.19) for j ∈ A2 and (2.22) for j ∈ A1, where we divide the right-
hand part of the relation by µ(j) > 0, we obtain that

Mv −
m∑

i=1

ν(i)c(i)ν −
∑

j∈A1

m
(j)
C∑

i=1

β
(j)
i

µ(j)

(
n(j) + µ(j)d

(j)
i

)
−
∑

j∈A2

c(j)n n(j) = −k̂(l)

n(j)T

v + µ(j)d
(j)T

i v + Γ(j) + ∆(j) ≥ 0 ⊥ β
(j)
i

µ(j)
≥ 0, i = 1, 2, . . . ,m

(j)
C , j ∈ A1.

n(j)T

v + Γ(j) + ∆(j) ≥ 0 ⊥ c(j)n ≥ 0, j ∈ A2

ν(i)T

v = −Υ(i), i = 1, 2, . . . , p.

An inspection of the last relation shows that it contains optimality conditions for (2.13), with

the third constraint repeated m
(j)
C times when j ∈ A2. This shows that v is a solution of the

strictly convex quadratic program (2.13) as claimed. The proof is complete. �
For a solution of (2.10)–(2.11) there may be some freedom in the choice of the multipliers

λ, at the contacts where there is no slip velocity. However, there is always a minimal choice of
λ, as we now show.

Lemma 2.2. Consider a solution
(
v(l+1), cν , cn, β̃, λ

)
of (2.10)–(2.11). Then there exists a

choice λ∗ such that
(
v(l+1), cν , cn, β̃, λ

∗
)

is also a solution of (2.10)–(2.11) such that, for any

j ∈ A, we have that equality is attained in

D(j)T

v(l+1) + λ∗(j)e(j) ≥ 0

for at least one entry.

Proof Let j ∈ A be the index of an active contact. Then the only relations affected by λ(j)

are the ones describing the friction model, (2.7):

D(j)T

v(l+1) + λ(j)e(j) ≥ 0 ⊥ β(j) ≥ 0,

µ(j)c
(j)
n − e(j)

T

β(j) ≥ 0 ⊥ λ(j) ≥ 0.
(2.23)

If equality is attained at least for one entry in the first inequality, then we can simply
define λ∗(j) = λ(j). If equality is not attained, then λ(j) > 0, and we must have, by the
complementarity relation, that β(j) = 0 and, from the second complementarity relation, that

µ(j)c
(j)
n = 0. Choose now

λ∗(j) = − min
i=1,2,...,m

(j)
C

{
d
(j)T

i v(l+1)
}
, j ∈ A.
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CONSTRAINT STABILIZATION FOR CONTACT AND FRICTION DYNAMICS SIMULATION 11

We have that λ∗(j) ≥ 0, from our assumption (2.6) of a balanced approximation to the friction
cone. It can now be immediately seen that if we replace λ(j) with λ∗(j), then the relations (2.23)
still hold. In addition, at least one entry in the first equation of (2.23) with λ(j) replaced by
λ∗(j) will be satisfied with equality (the one for which the minimum in the displayed equation
is attained). The proof is complete. �

2.4. Constraint Qualification and the Pointed Friction Cone Assumption

To approach geometrical constraint stabilization by our method, we need to develop several
results quantifying the dependence of the solution of strictly convex quadratic programs with
respect to the free term of the constraints, and in particular of the solution v of (2.13) with
respect to ∆ and Υ. The main tool in obtaining these results will be the pointed friction cone
assumption, which we show that it is equivalent to the Mangasarian-Fromovitz constraint
qualification for (2.13).

2.4.1. Mangasarian-Fromovitz Constraint Qualification for Quadratic Programs Consider
the quadratic program

minimize qTx+ 1
2x

TQx
subject to ATx+ α ≥ 0

BTx+ β = 0,
(2.24)

where A ∈ RI n×m, B ∈ RI n×p, α ∈ RI m, and β ∈ RI p.

We say that MFCQ holds for (2.24) at any point x ∈ RI n if the following hold:

(MFCQ)
1. B has full row rank.
2. ∃f ∈ RI m, f < 0, and d ∈ RI n, such that AT d = f, BT d = 0.

In the context of nonlinear programming, MFCQ is defined at a point x and involves only
the inequalities active at x [22, 23]. MFCQ is the essential condition for nonlinear programs
to behave well with respect to perturbations [27], a fact that will also be exploited here.

In addition, MFCQ is important because it allows us to work with a constraint qualification
that is weaker than linear independence of the constraints of (2.24). When applying these
concepts to (2.13) we have shown that the linear independence constraint qualification is too
strong of a concept for three-dimensional configurations [1].

A useful characterization of MFCQ is obtained by the use of duality. We obtain that [1]

MFCQ holds ⇔ Aµ+Bν = 0
µ ∈ RI m, µ ≥ 0, ν ∈ RI p

}
⇒ µ = 0, ν = 0. (2.25)

An important consequence of (2.24) satisfying MFCQ is the following.

Lemma 2.3. If the quadratic program (2.24) satisfies MFCQ, then it is feasible for any
α ∈ RI m and β ∈ RI p. If, in addition, the matrix Q is positive definite, then the quadratic
program has a solution.

Proof The first part of the claim follows from [27]. The second part of the claim is obvious
from the strict convexity of the objective function of (2.24). �
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12 M. ANITESCU AND G. D. HART

2.4.2. Pointed Friction Cone We now define a friction cone regularity assumption. We define
the friction cone to be the portion in the velocity space that can be covered by feasible
constraint interaction impulses, or

FC(q) =
{
t = ν̃cν + ñcn + D̃β̃

∣∣∣cn ≥ 0, β̃ ≥ 0,
∣∣∣
∣∣∣β(j)

∣∣∣
∣∣∣
1
≤ µ(j)c(j)n , ∀j ∈ A

}
. (2.26)

Clearly, the cone FC(q) is a convex set.

Definition [30]: We say that the friction cone FC(q) is pointed if it does not contain any
proper linear subspace.

This assumption is essential in ensuring that the limits of the solutions of the time-stepping
scheme (2.10)–(2.11) converge to a weak solution of the continuous problem [30]. By using the
duality theory, we have the following result [1]:

FC(q) is pointed ⇔ ∀
(
cν , cn ≥ 0, β̃ ≥ 0

)
6= 0 such that

∣∣∣∣β(j)
∣∣∣∣

1
≤ µ(j)c

(j)
n , ∀j ∈ A

we must have that ν̃cν + ñcn + D̃β̃ 6= 0.
(2.27)

The pointed friction cone assumption plays an important part in the study of the limit case
h→ 0 [30]. In our case, we have the following important result.

Theorem 2.4. Assume that the friction cone FC(q) is pointed. Then the mixed LCP (2.10)–
(2.11) has a solution.

Proof It is an immediate consequence of the results in [26]. �
It is also of interest to write an alternative description of the pointedness of the friction cone

for the frictionless case. By specializing (2.27) for the case where µ̃ = 0, we obtain that

ñcn + ν̃cν = 0, cn ≥ 0 ⇒ cn = 0, cν = 0. (2.28)

Using duality in the same way we did to uncover the relationship between MFCQ and (2.25),
we can determine that this description is equivalent to the joint constraint matrix ν̃ having
linearly independent columns and

∃v such that ν̃T v = 0 and ñT v > 0.

The latest condition means that the rigid multibody configuration can be disassembled [6]:
there exists an external force that breaks all contacts while keeping feasibility of the joint
constraints. This condition can be estimated visually for most simple configurations.

The next result makes a connection between the pointed friction cone condition and MFCQ
for (2.13) and (2.14).

Lemma 2.5. If the friction cone of the current configuration is pointed, then the quadratic
program (2.13) satisfies MFCQ.

Proof Assume that, at some point v, (2.13) does not satisfy MFCQ. Then, from (2.25)

it follows that there exist the multipliers η
(j)
k ≥ 0, j ∈ A, k = 1, 2, . . . ,m

(j)
C and c

(i)
ν ,

i = 1, 2, . . . , p, not all 0, such that

0 =
∑

j∈A

m
(j)
C∑

k=1

η
(j)
k

(
n(j) + µ(j)d

(j)
k

)
+

∑

i=1,2,...,p

c(i)ν ν(i). (2.29)
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Define now, for j ∈ A,

c(j)n =

m
(j)
C∑

k=1

η
(j)
k ≥ 0

β
(j)
k = µ(j)η

(j)
k ≥ 0

β(j) =

[
β

(j)
1 , β

(j)
2 , . . . , β

(j)

m
(j)
C

]T

.

One can immediately see with this definition that, for any j ∈ A,

µ(j)c(j)n =

m
(j)
C∑

k=1

β
(j)
k = µ(j)e(j)

T

β(j) = µ(j)
∣∣∣
∣∣∣β(j)

∣∣∣
∣∣∣
1
.

Therefore, cn =
{
c
(j)
n

}
j∈A

, β̃ =
{
β(j)

}
j∈A

and cν =
{
c
(i)
ν

}
i=1,2,...,p

satisfy the inequalities

defining the friction cone FC(q) (2.26), are not all 0 (from our choice of η and cν), and from
(2.29) satisfy

0 = ñcn + D̃β̃ + ν̃cν .

This contradicts the assumption that the cone is pointed and hence proves the claim. �

3. Stability Results for Quadratic Programming

In this section, we bound the size of the solution of the quadratic program (2.24) and,
subsequently, (2.13) with respect to the size of the free term of their constraints. Using Theorem
2.1 this will allow us to bound the size of the velocity solution of (2.10)–(2.11) as a function
of the terms that depend on the geometrical constraints: ∆ and Υ.

Lemma 3.1. Let A ∈ RI n×m, B ∈ RI n×p of full column rank, f ∈ RI m, and d ∈ RI n, such
that ||d|| = 1, fi < 0 for i = 1, 2, . . . ,m, and

AT d = f < 0, BT d = 0. (3.30)

We define
f̂ = min

i=1,m
{−fi} > 0.

We denote by σ0(B) the smallest singular value of B, which must be positive from the full rank

assumption on B. Then there exists a parameter c(A,B) > 0 that depends only on f̂ , σ0(B),
and ||A|| such that

∣∣∣∣(aT , bT )
∣∣∣∣ ≤ c(A,B) ||Aa+Bb|| , ∀a ∈ RI m ≥ 0, ∀b ∈ RI p.

Proof Let a ∈ RI m ≥ 0, b ∈ RI p and define

g = Aa+Bb,

and multiply the equality by dT to get

dT g = dTAa+ dTBb.
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14 M. ANITESCU AND G. D. HART

From the definition of d, the above equality becomes

dT g = fTa.

Since f < 0 and a ≥ 0, we have that 0 ≥ −f̂ ||a||1 ≥ fTa. Using the Cauchy-Schwarz inequality
in the last equality, together with the fact that ||d|| = 1, we obtain that

||g|| ≥ ‖dT g‖ ≥ f̂ ||a||1 ,
that is,

||a||1 ≤ ||g||
f̂
. (3.31)

From the definition of g, we have that Bb = g−Aa. Taking the 2 norms, and using the triangle
inequality, we obtain, after applying the inequality ||a|| ≤ ||a||1 and (3.31), that

||Bb|| ≤ ||g|| + ||A|| ||a|| ≤ ||g|| + ||A|| ||a||1 ≤ ||g|| + ||A|| ||g||
f̂
. (3.32)

On the other hand, from the definition of the smallest singular value, and since B is full column
rank, we have that ||Bb|| ≥ σ0(B) ||b||. Using this inequality in (3.32), we obtain that

||b|| ≤ 1

σ0(B)
||g|| + ||g||

σ0(B)f̂
||A|| .

Using the last inequality, (3.31), the inequality ||a|| ≤ ||a||1 and Minkowski’s inequality, we
obtain that

∣∣∣∣(aT , bT
)∣∣∣∣ ≤ ||a|| + ||b|| ≤ ||g||

(
1

f̂
+

1

σ0(B)
+

||A||
σ0(B)f̂

)
.

The conclusion follows after taking

c(A,B) =
1

f̂
+

1

σ0(B)
+

||A||
σ0(B)f̂

.

�
Consider now the quadratic program

minv
1
2v

TQv + kT v
subject to AT v + α ≥ 0,

BT v + β = 0,
(3.33)

where Q ∈ RI n×n is a symmetric positive definite matrix, A ∈ RI n×m, B ∈ RI n×p, α ∈ RI m, and
β ∈ RI p. Note that the quadratic program (3.33) satisfies MFCQ if and only if it satisfies (3.30).
Therefore, if the quadratic program (3.33) satisfies MFCQ, then there exists c(A,B) > 0 with
the properties specified in Lemma 3.1.

We perform the change of variable v = Q
1
2 v and transform the quadratic program (3.33)

into
minv

1
2v

T v + k
T
v

subject to A
T
v + α ≥ 0,

B
T
v + β = 0,

(3.34)

where
k = Q− 1

2 k, A = Q− 1
2A, B = Q− 1

2B.

It is immediate that (3.33) satisfies MFCQ if and only if (3.34) satisfies MFCQ.
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Theorem 3.2. Assume that the quadratic programs (3.33) and (3.34) satisfy MFCQ and thus
(3.30). Then the quadratic program (3.33) is feasible, and its solution v∗ satisfies
∣∣∣
∣∣∣Q 1

2 v∗
∣∣∣
∣∣∣
2

≤
∣∣∣
∣∣∣Q− 1

2 k
∣∣∣
∣∣∣
2

+ ĉ(A,B,Q)2
∣∣∣∣(αT

−, β
T
)∣∣∣∣2 ≤

∣∣∣
∣∣∣Q− 1

2 k
∣∣∣
∣∣∣
2

+ c(A,B,Q)2
∣∣∣∣(αT

−, β
T
)∣∣∣∣2

∞
.

Here α−, with entries α−,i = −min{αi, 0}, i = 1, 2, . . . ,m, is the negative part of the vector

α, ĉ(A,B,Q) = c(A,B) = c(Q− 1
2A,Q− 1

2B), where c(·, ·) is the parameter obtained in Lemma
3.1 for the quadratic program (3.34), and c(A,B,Q) =

√
m+ n ĉ(A,B,Q).

Proof Feasibility of (3.33) and (3.34) when MFCQ holds follows from Lemma 2.3. We write

the optimality conditions for (3.34), at the solution v∗ = Q
1
2 v∗, with Lagrange multipliers

η ∈ RI m, η ≥ 0, and ζ ∈ RI n:

v∗ + k = Aη +Bζ,

A
T
v∗ + α ≥ 0 ⊥ η ≥ 0,

B
T
v∗ + β = 0.

(3.35)

Using Lemma 3.1, which applies because, by our assumption, MFCQ and, thus, (3.30), hold
for (3.33) and (3.34), we obtain that

∣∣∣∣(ηT , ζT
)∣∣∣∣ ≤ c(A,B)

∣∣∣∣v∗ + k
∣∣∣∣ . (3.36)

Here c(·, ·) is the parameter from Lemma 3.1. Multiplying the first equation of (3.35) by v∗,
and using the last two equations of (3.35), we obtain that

v∗T
(
v∗ + k

)
= v∗TAη + vT∗Bζ = −ηTα− ζTβ.

Since η ≥ 0, we have that ηTα ≥ −ηTα−. Using this inequality and the Cauchy-Schwarz
inequality in the last equality, we obtain that

v∗T
(
v∗ + k

)
≤ ηTα− − ζTβ ≤

∣∣∣∣(αT
−, β

T
)∣∣∣∣ ∣∣∣∣(ηT , ζT )

∣∣∣∣ .
Using (3.36), we obtain that

v∗T
(
v∗ + k

)
≤ c(A,B)

∣∣∣∣(αT
−, β

T
)∣∣∣∣ ∣∣∣∣v∗ + k

∣∣∣∣ . (3.37)

Using that k = v∗ + k − v∗ and the inequality (3.37), we obtain that
∣∣∣∣k
∣∣∣∣2 = ||v∗||2 +

∣∣∣∣v∗ + k
∣∣∣∣2 − 2v∗T

(
v∗ + k

)
≥

||v∗||2 +
∣∣∣∣v∗ + k

∣∣∣∣2 − 2c(A,B)
∣∣∣∣(αT

−, β
T
)∣∣∣∣ ∣∣∣∣v∗ + k

∣∣∣∣ =
||v∗||2 − c(A,B)2

∣∣∣∣(αT
−, β

T
)∣∣∣∣2 +

∣∣∣∣∣∣∣∣v∗ + k
∣∣∣∣− c(A,B)

∣∣∣∣(αT
−, β

T
)∣∣∣∣∣∣∣∣2 ≥

||v∗||2 − c(A,B)2
∣∣∣∣(αT

−, β
T
)∣∣∣∣2 .

Since v∗ = Q
1
2 v and k = Q− 1

2 k, the first inequality in the conclusion of the theorem follows
immediately. The second inequality follows by using the inequality between ||·||2 and ||·||∞. �
Corollary 3.3. Assume that the quadratic program (2.13) satisfies MFCQ. Let A(q(l), µ̃)
define the matrix of the inequality constraints and B(q(l)) define the matrix of the equality
constraints in (2.13). Further, assume that Γ(j) ≥ 0, j ∈ A. Let c(A(q(l), µ̃), B(q(l)),M (l)) be
the quantity defined in Theorem 3.2. Then the solution v(l+1) of (2.13) satisfies

v(l+1)T

M (l)v(l+1) ≤ v(l)M (l)v(l)+h2
l k

(l)M (l)−1k(l)+2hlv
(l)T

k(l)+c(A(q(l), µ̃), B(q(l)),M (l))2
∣∣∣
∣∣∣∆(l)

− ,Υ(l)
∣∣∣
∣∣∣
2

∞
.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



16 M. ANITESCU AND G. D. HART

Note The assumption Γ(j) ≥ 0, j ∈ A, is automatically satisfied under the conditions of
Theorem 2.1.

Proof Since Γ(j) ≥ 0, j ∈ A, we obtain that (∆(j) + Γ(j))− ≤ ∆
(j)
− , for j ∈ A.

Since MFCQ holds for (2.13), we can apply Theorem 3.2 to the quadratic program (2.13),

with v∗ = v(l+1), Q = M (l), k = k̂ = −Mv(l) −hlk
(l), β = Υ, α = Γ + ∆. Using the inequality

in the preceding paragraph, we obtain that

∣∣∣
∣∣∣M (l) 1

2 v(l+1)
∣∣∣
∣∣∣
2

≤
∣∣∣
∣∣∣ M (l)− 1

2

(
M (l)v(l) + hlk

(l)
) ∣∣∣
∣∣∣
2

+ c
(
A(q(l), µ̃), B(q(l)),M (l)

)2 ∣∣∣∣(∆T
−,Υ

T )
∣∣∣∣2
∞
.

Working on the term following the inequality sign, we obtain that

∣∣∣
∣∣∣ M (l)− 1

2

(
M (l)v(l) + hlk

(l)
) ∣∣∣
∣∣∣
2

= v(l)T

M (l)v(l) + h2
l k

(l)T

M (l)−1k(l) + 2hlv
(l)T

k(l).

This proves the claim since we also have that

∣∣∣
∣∣∣M (l) 1

2 v(l+1)
∣∣∣
∣∣∣
2

= v(l+1)T

M (l)v(l+1).

�

4. Constraint Stability Results

Before we can state our results, we need to ensure certain regularity properties of the mappings
that are used to define the noninterpenetration constraints (2.3). We now describe in some
detail how the mappings Φ(j) are defined and some of their properties.

We denote by nbod the number of rigid bodies in the system. Let Q1, Q2, . . . , Qnbod
be

the spaces that contain the generalized coordinates of the bodies B1, B2, . . . Bnbod
, whose

generalized coordinates we denote by b1, b2, . . . , bnbod
. These spaces are locally homeomorphic

with some bounded open set of Rs [21].
The aggregate generalized position (from here on, the generalized position) becomes q =

(bT1 , b
T
2 , . . . , b

T
nbod

)T . We denote Q = Q1 ×Q2 × . . . Qnbod
. At a generalized position vector q,

we denote by δi1i2(q) the signed distance between the bodies Bi1 and Bi2 [18]:

δi1i2(q) =





Euclidean distance between Bi1 and Bi2 if they do not interpenetrate.

Minus the length of smallest relative translation vector that separates Bi1 and Bi2
if they are in an interpenetrating configuration.

(4.38)
Since in the following we work only with the signed distance function, we refer to δi1i2(q)
simply as the distance function. This distance is a mapping that depends continuously on q
and on the shape of the bodies, but we consider the latter dependency only implicitly.

The feasible set of the noninterpenetration constraint Bi1 cannot interpenetrate Bi2 is
δi1i2(q) ≥ 0. The feasible set of all noninterpenetration and joint constraints is then defined
by

δi1i2(q) ≥ 0, 1 ≤ i1 < i2 ≤ nbod, Θ(i)(q) = 0, i = 1, 2, . . . ,m. (4.39)

To rewrite the noninterpenetration constraints in the framework of Section 2 and of [1, 2, 3, 29],
we associate a pair (i1, i2) with an index j ∈ {1, 2, . . . , p} and define Φ(j)(q) = δi1i2(q). Here
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CONSTRAINT STABILIZATION FOR CONTACT AND FRICTION DYNAMICS SIMULATION 17

p = n(n+1)
2 . In the following analysis we use (2.3) and (2.1) interchangeably with (4.39) to

describe the geometrical constraints.
In proving that our method provides constraint stabilization, we need differentiability of

δi1i2(q), 1 ≤ i1 < i2 ≤ nbod, over a sufficiently large subset of Q. Unfortunately, differentiability
of δi1i2(q), 1 ≤ i1 < i2 ≤ nbod, over all of Q cannot be assumed even for simple shapes, as can
be seen in Figure 1. In this figure we have an immovable infinite beam of constant height H
(body 1) and a disk of radius R (body 2).

Since the beam is immovable, the generalized coordinates defining the position of the disk
are q = (x, y, φ), where φ is the angle that defines the rotation of the disk with respect to the
world. One can immediately see that the distance between the disk and the beam is a function
of only y and is equal to

δ12(q) = |y| −R− H

2
(4.40)

and is not a differentiable function of y. It is therefore necessary to create a stabilization
framework that works with weaker differentiability assumptions.

Since we are interested in achieving feasibility as the time step goes to 0 and keeping
infeasibility under control for finite time step, it will be sufficient for δi1i2(q) to be differentiable
only for small values of the interpenetration for fixed values of i1 and i2.

To formally accommodate this requirement, we define, for some ε > 0, the set

Ωε =
{
q ∈ Q|δi1i2(q) ≥ −ε, i1, i2 = 1, 2, . . . , nbod,

∣∣∣Θ(i)(q)
∣∣∣ ≤ ε, i = 1, 2, . . . ,m

}
.

We make the following assumption about the kinematic description of the noninterpenetra-
tion constraints.

(A1) There exists ε0 > 0 such that, ∀0 ≤ ε ≤ ε0, we have that δi1i2(q) for 1 ≤ i1, i2 ≤ nbod

and Θ(i)(q) for i = 1, 2, . . . ,m are twice continuously differentiable and their first and
second derivatives are uniformly bounded over Ωε by Cd

1 and Cd
2 , respectively. For the

case where there are no joint constraints, this assumption holds if the bodies are strictly
convex and smooth, for some ε0 > 0 [5]. It also holds if one body is an infinite flat
wall and the others are strictly convex. An analysis of the limits of applicability of the
differentiability assumptions can be found in [5].
Since any two-dimensional or three-dimensional body can be approximated by a union of
strictly convex bodies with smooth boundary, Assumption (A1) holds, in principle, when
replacing bodies of any shape by such approximations while adding the corresponding
mappings to the list of those defining (4.39). For efficiency purposes, however, it may be
useful to work with bodies whose shape is not smooth but only piecewise smooth, such
as box-shaped bodies. We defer the inclusion of bodies with piecewise smooth shape in
the analysis to future research.

In addition to this assumption, and to define our approach completely, we need to specify
the mechanism by which we choose the active set A. Our definition of the active set depends
on a parameter ε̂. We define

A(q) =
{
(i1, i2)|Φ(j)(q) ≤ ε̂, 1 ≤ j ≤ p

}
. (4.41)

We now make the following assumptions concerning the dynamics.
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18 M. ANITESCU AND G. D. HART

(D1) The mass matrix M (l) = M(q(l)) is constant. We denote the constant mass matrix
by M . This situation can be achieved by using the Newton-Euler formulation in body
coordinates in three dimensions [25]. In two dimensions, the same situation is achieved
by using the world coordinates [21].

(D2) Denote by A(q, µ̃) the matrix defining the inequality constraints and by B(q) the matrix
defining the equality constrains of (2.13). Clearly the dimension of A(q, µ̃) depends on
the size of the active set and of the size of the approximation to the friction cone. We
assume that

c(A(q, µ̃), B(q),M) ≤ c0, ∀ε ∈ [0, ε0], ∀q ∈ Ωε(q),

where c(·, ·, ·) is the parameter defined in Theorem 3.2.
Based on Theorem 3.2, the existence of c(·, ·, ·) is guaranteed by (2.13) satisfying MFCQ.
In turn, from Lemma 2.5, (2.13) satisfies MFCQ if the pointed friction cone assumption
is satisfied at the current configuration (position q(l) and active friction coefficients µ̃).
Therefore Assumption (D2) is implied by an uniformly pointed friction cone assumption.
The uniformly pointed friction cone assumption has been used in the past and is an
essential condition in proving convergence of a related time-stepping scheme as h → 0
[30]. Based on the disassemblability interpretation following Theorem 2.4, one can show
that, if all the bodies are strictly convex and smooth, and no joints are involved, then
this assumption holds for ε0 and µ̃ sufficiently small.
We also have a quantitative description of conditions that imply Assumption (D2). From
Lemma 3.1 and Theorem 3.2 Assumption (D2) holds if m,n, ||A(q, µ̃)|| are uniformly

upper bounded and if f̂ , which exists from Lemma 2.5 when the friction cone is pointed,
and σ0(B(q)) are uniformly lower bounded over Ωε.

(D3) The external force is continuous and increases at most linearly with the position and the
velocity and is uniformly bounded in time. Hence,

k(t, v, q) = k0(t, v, q) + fc(v, q) + k1(v) + k2(q), (4.42)

and that there exists cK ≥ 0 such that

||k0(t, v, q)|| ≤ cK , ||k1(v)|| ≤ cK ||v|| , ||k2(q)|| ≤ cK ||q|| . (4.43)

Here fc(v, q) is the Coriolis force, which satisfies the following important property [2]:

vT fc(v, q) = 0, ∀v, q. (4.44)

Elastic forces are contained in k2, whereas damping forces are contained in k1.

Our main result concerns the behavior of the infeasibility of the noninterpenetration and
the joint constraint. We define the measure of constraint infeasibility:

I(q) = max
1≤j≤p,1≤i≤m

{
Φ

(j)
− (q), |Θ(i)(q)|

}
. (4.45)

We also define a measure of infeasibility that is attached to a choice of the active set:

IA(q) = max
j∈A,1≤i≤m

{
Φ

(j)
− (q), |Θ(i)(q)|

}
. (4.46)

Since, by the definition (4.41), the active set contains all noninterpenetration constraints
that are infeasible at the current point q, we must have that

I(q) = IA(q)(q).
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In general, however, we will have, for different q1 and q2, that

I(q1) 6= IA(q2)(q1).

Looking at the definition of ∆ and Υ after (2.10)–(2.11), we get that

IA(q(l)) = hl

∣∣∣
∣∣∣∆(l)T

− ,Υ(l)
∣∣∣
∣∣∣ . (4.47)

A connection between Ωε for ε0 and I(q) is also that

q ∈ Ωε ⇔ I(q) ≤ ε.

We will prove our result for a more general form of the algorithm than the one provided by
(2.10)–(2.11), to also incorporate time-stepping methods that are based on suitable relaxations
of the potentially nonconvex subproblem (2.10)–(2.11) [1]:

• Given q(l), v(l), hl, determine v(l+1) , which is a solution of (2.13), where A is defined as
in (4.41) and where all the relevant data, with the exception of Γ(j), j ∈ A, are defined
as in the setup of (2.10)–(2.11). Assume that the solution v(l+1) and Γ have the property
that Γ ≥ 0 and

∀j ∈ A, ∃i, 1 ≤ i ≤ m
(j)
C such that − µ(j)d

(j)T

i v(l+1) ≥ Γ(j). (4.48)

This assumption is satisfied in at least two cases:

1. When v(l+1) is found by solving (2.10)–(2.11) and Γ = µ̃λ∗, where λ∗ is the
quantity from Lemma 2.2. This case follows from Theorem 2.1 and Lemma 2.2.
When the friction cone is pointed, as we will assume by invoking Assumption
(D2), the existence of velocity v(l+1) guaranteed by Theorem 2.4.

2. When (2.13) is solved directly after choosing Γ = 0. This case corresponds to the
convex relaxation algorithm described in [1]. When the friction cone is pointed, as
we will assume by invoking Assumption (D2), the existence of a solution of (2.13)
is guaranteed by using, successively, the Lemmas 2.5 and 2.3.

• Compute q(l+1) = q(l) + hlv
(l+1), take l = l + 1, and restart.

Theorem 4.1. Consider the time-stepping algorithm defined above with the choice of active
set defined by (4.41). The algorithm is applied over a finite time interval [0, T ], and the time
steps 0 < hl satisfy

N−1∑

i=0

hl = T and
hl−1

hl

≤ ch, l = 1, 2, . . . , N − 1.

In addition, it is assumed that the system satisfies the assumptions (A1) and (D1)–(D3) and
that the system is initially feasible, that is, I(q(0)) = 0.

Then, there exist H > 0, V > 0, and Cc > 0 such that, whenever, in addition to the
requirements above, we have that hl < H, ∀ l, 0 ≤ l ≤ N − 1, we will also have that

1.
∣∣∣∣v(l)

∣∣∣∣ ≤ V , ∀1 ≤ l ≤ N and

2. I(q(l)) ≤ Cc

∣∣∣∣v(l)
∣∣∣∣2 h2

l−1, ∀1 ≤ l ≤ N.
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Note The proof of the Theorem is considerably lengthened by the fact that we have to ensure
that q(l) ∈ Ωε, for l = 1, 2, . . . , N and for an appropriately chosen value of ε, in order to be able
to use Assumption (A1) and, subsequently, to apply Taylor’s Theorem. As we argued before
defining Assumption (A1), it would be unrealistic to assume the everywhere differentiability
of the mapping defining the noninterpenetration constraint (2.3), which would substantially
simplify the proof.

Proof We will prove this theorem by showing that all conditions in Theorem II.2 are met.
To that end, we make the following identification:

zl =
∣∣∣
∣∣∣M 1

2 v(l)
∣∣∣
∣∣∣ , wl =

∣∣∣
∣∣∣q(l)

∣∣∣
∣∣∣ , θ(l) = I(q(l)). (4.49)

We use the assumption (D1) that the mass matrix M is constant.
Assume now that for some l ∈ {0, 1, . . . , N} we have that q(l) ∈ Ω ε0

2
, that is,

θl = I(q(l)) ≤ ε0
2
. (4.50)

To obtain the inequalities from the statement of Theorem II.2, we apply Corollary 3.3, which
applies because of our assumption (D2) and (4.50). Before applying it, we want to obtain an

upper bound on the term v(l)T

k(l), based on the assumption (D3). Using the identification
(4.49) and the property of the Coriolis force (4.44), we obtain that

v(l)T

k(l) = v(l)T
(
fc(v

(l), q(l)) + k0(v
(l), q(l), t(l)) + k1(v

(l)) + k2(q
(l))
)

= v(l)T
(
k0(v

(l), q(l), t(l)) + k1(v
(l)) + k2(q

(l))
)

≤ cK
∣∣∣∣M−1

∣∣∣∣ 12 zl + cK
∣∣∣∣M−1

∣∣∣∣ z2
l + cK

∣∣∣
∣∣∣M− 1

2

∣∣∣
∣∣∣ zlwl. (4.51)

We denote
ψ1(z, w) = max

t≤T, ||v||≤z

∣∣∣
∣∣∣M−

1
2

∣∣∣
∣∣∣,||q||≤w

k(q, v, t)TM−1k(q, v, t), (4.52)

which is a continuous function, following our assumption (D3). Using now the conclusion of
the Corollary 3.3 and the parameter c0 defined in the assumption (D2), together with the
identification (4.49), and the bounds (4.51) and (4.52), we obtain that

z2
l+1 ≤ z2

l + hl2
(
cK
∣∣∣∣M−1

∣∣∣∣ 12 zl + cK
∣∣∣∣M−1

∣∣∣∣ z2
l + cK

∣∣∣
∣∣∣M− 1

2

∣∣∣
∣∣∣ zlwl

)
+ h2

lψ1(z, w) + c0
||θl||2
h2

l

,

(4.53)
where the substitution of θl in the last term is possible from the relations (4.46) and (4.47)
and since I(q) = IA(q)(q).

For the positions q(l) we have, from the definition of the time-stepping scheme, that
q(l+1) = q(l) + hlv

(l+1), which, using (4.49), leads to

wl+1 ≤ wl + hl

∣∣∣
∣∣∣M− 1

2

∣∣∣
∣∣∣ zl. (4.54)

We have thus obtained that

(4.50) ⇒ (4.53) and (4.54).
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We now show that if (4.50) holds, then

Cd
1hl

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣ ≤ 1

2
min{ε̂, ε0

2
} ⇒ I(q(l) + τv(l+1)) ≤ ε0, ∀τ ∈ [0, hl]. (4.55)

Indeed, assume that (4.55) does not hold. Define

t∗ = min
{
t|I(q(l) + τv(l+1)) ≤ ε0, ∀0 ≤ τ ≤ t

}
.

From (4.50) we have that t∗ > 0, and, since (4.55) does not hold, we must have that t∗ < hl.
From the definition of (4.45) we have that there exists 1 ≤ i1, i2 ≤ nbod, or 1 ≤ i ≤ m, such
that either δi1,i2(q

(l) + t∗v(l+1)) = −ε0 or |Θ(i)(q(l) + t∗v(l+1))| = ε0. We assume the former,
the latter case following much the same way. From (4.50) we must have that δi1i2(q

(l)) ≥ − ε0
2 .

Since, from the definition of t∗, we have that I(q(l) + τv(l+1)) ≤ ε0, ∀0 ≤ τ ≤ t∗, we can apply
Assumption (A1) and Taylor’s theorem to obtain that

ε0
2

≤ δi1i2(q
(l)) − δi1i2(q

(l) + t∗v(l+1)) ≤ Cd
1hl

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣ ≤ ε0

4
,

which is a contradiction. This shows that (4.55) must hold.

We also show that if (4.50) holds, then

Cd
1hl

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣ ≤ 1

2
min{ε̂, ε0

2
} ⇒ δi1,i2(q

(l+1)) ≥ ε̂

2
> 0, ∀(i1, i2) = j /∈ A(q(l)). (4.56)

Indeed, if (i1, i2) /∈ A(q(l)), then, following the definition of the active set (4.41), we have that
δi1,i2(q

(l)) ≥ ε̂. Using now (4.55), Assumption (A1), and Taylor’s theorem, we obtain that

δi1,i2(q
(l+1)) ≥ δi1,i2(q

(l)) − Cd
1hl

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣ ≥ ε̂− ε̂

2
> 0,

which proves (4.56).

Using the identification (4.49), we obtain that
∣∣∣∣v(l+1)

∣∣∣∣ ≤
∣∣∣
∣∣∣M− 1

2

∣∣∣
∣∣∣ zl+1 and thus that

Cd
1hl

∣∣∣
∣∣∣M− 1

2

∣∣∣
∣∣∣ zl+1 ≤ 1

2
min{ε̂, ε0

2
} (4.57)

=⇒ Cd
1hl

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣ ≤ 1

2
min{ε̂, ε0

2
}.

Using (4.56) and (4.55), we now obtain that

(4.50) and (4.57) =⇒
{
I(q(l) + τv(l+1)) ≤ ε0, ∀τ ∈ [0, hl]
δi1i2(q

(l+1)) ≥ ε̂
2 > 0, ∀(i1, i2) = j /∈ A(q(l)).

(4.58)

Finally we show that if (4.50) and (4.57) hold, then the following relation holds:

θl+1 = I(q(l+1)) ≤ 1

2
Cd

2h
2
l

∣∣∣∣M−1
∣∣∣∣ z2

l+1. (4.59)

To prove this statement, we have three cases to consider, following the definition of (4.45):
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1. I(q(l+1)) = −δ(i1,i2)(q
(l+1)) = −Φ(j)(q(l+1)), where j = (i1, i2) ∈ A(q(l)). By the

definition of the algorithm, and since v(l+1) is a solution of (2.13), we must have that

n(j)T

v(l+1) + µ(j)d
(j)T

i v(l+1) ≥ −
(
Γ(j) + ∆(j)

)
, j ∈ A, i ∈ m

(j)
C .

Using the assumption (4.48), we can assume that for any j ∈ A there is an i ∈
{1, 2, . . . ,m(j)

C } such that −µ(j)d
(j)T

i v(l+1) ≥ Γ(j). For that particular i, we obtained
from the displayed inequality that

n(j)T

v(l+1) ≥ −∆(j) = −Φ(j)(q(l))

hl

.

Using the last inequality, (2.4), and Taylor’s theorem, which applies as a result of
Assumption (A1) and (4.58) and since q(l+1) = q(l) + hlv

(l+1), we have that

Φ(j)(q(l+1)) ≥ Φ(j)(q(l)) + hl∇qΦ
(j)T

v(l+1) − 1

2
Cd

2h
2
l

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣
2

≥ −1

2
Cd

2h
2
l

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣
2

,

which, from (4.49), implies (4.59). Here we used the fact that n(j) = ∇qΦ
(j)(q(l)).

2. I(q(l+1)) = −δi1i2(q
(l+1)) = −Φ(j)(q(l+1)) > 0, where j = (i1, i2) /∈ A(q(l)). From (4.58)

we have that Φ(j)(q(l+1)) ≥ ε̂
2 , so this case cannot occur.

3. I(q(l+1)) = |Θ(i)(q(l+1))|, where 1 ≤ i ≤ m. By Theorem 2.1, and since v(l+1) is a solution
of (2.13), we must have that

ν(i)T

v = −Υ(i) = −Θ(i)(q(l))

hl

.

Using the last equality, (2.2), and Taylor’s theorem, which applies as a result of
Assumption (A1) and (4.58) and since q(l+1) = q(l) + hlv

(l+1), we have that

|Θ(i)(q(l+1))| ≤ |Θ(i)(q(l)) + hl∇qΘ
(i)T

v(l+1)| + 1

2
Cd

2h
2
l

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣
2

≤ 1

2
Cd

2h
2
l

∣∣∣
∣∣∣v(l+1)

∣∣∣
∣∣∣
2

which, from (4.49), implies (4.59). Here we used the fact that ν(i) = ∇qΘ
(i)(q(l)).

We therefore have that
(4.50) and (4.57) ⇒ (4.59).

We use the boxed implications and the identification defined in (4.49) for l = n, and associate
the equations as follows: (4.50) ↔ (II.63), (4.53) ↔ (II.64), (4.54) ↔ (II.65), (4.57) ↔ (II.66)
and (4.59) ↔ (II.67). After an appropriate choice of the parameters ci, i = 1, 2, . . . , 5, we can
now apply Theorem II.2.

From Theorem II.2 we obtain that there exist an H > 0 and Z > 0 such that, whenever we

have that hl ≤ H , ∀ 0 ≤ l ≤ N , we obtain that ||zl|| ≤ Z, ∀ 0 ≤ l ≤ N . Defining V =
∣∣∣
∣∣∣M− 1

2

∣∣∣
∣∣∣Z

and using (4.49) we get that ||vl|| ≤ V , ∀0 ≤ l ≤ N , which proves Part 1 of the claim. From
the second part of Theorem II.2 we obtain that (4.50) and (4.57), and, therefore, (4.59), hold

for l = 1, 2, . . . , N . The proof of Part 2 follows after using that zl+1 ≤
∣∣∣
∣∣∣M 1

2

∣∣∣
∣∣∣
∣∣∣∣v(l+1)

∣∣∣∣, that

follows from (4.49) and from choosing Cc = 1
2C

d
2

∣∣∣∣M−1
∣∣∣∣ ||M || in (4.59). �

Theorem 4.1 has the following important consequences for sufficiently small time steps:
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1. Our approach achieves constraint stabilization, which is quantified by the conclusion of
Part 2 of the Theorem. Constraint stabilization does not follow from I(q(l)) → 0 as
h(l) → 0, which also occurs for unstabilized, convergent schemes. It follows from the fact
that the infeasibility is upper bounded by a local measure of the size of the solution. In
particular, v(l+1) = 0 ⇒ I(q(l+1)) = 0, which does not occur for unstabilized schemes.

2. The velocity remains bounded for a finite simulation time interval and for a fairly general
form of the external force (4.42).

3. We can use a constant time step and keep the infeasibility under control while solving
only one linear complementarity problem per step. Therefore the amount of computation
is, in some sense, predictable, which is very useful for real-time computation.

5. Applying the Scheme to DAE

Important insight into the behavior of the scheme we propose here can be obtained by applying
the scheme to a problem that has only joint constraints. We consider here only the case where
the time step is constant, that is, hl = h, ∀l.

We compare the method from this work to the similar unstabilized method. A unifying
framework is

Mv(l+1) −
∑m

i=1 c
(i)
ν ν(i) = Mv(l) + hk(l)

ν(i)T

v(l+1) = Υ(i), i = 1, 2, . . . ,m
q(l+1) = q(l) + hv(l+1).

(5.60)

Here the choice Υ(i) = −Θ(i)(q(l))
h

, i = 1, 2, . . . ,m, corresponds to our method, whereas

Υ(i) = 0, i = 1, 2, . . . ,m corresponds to the unstabilized method. Using Theorem 4.1, we
obtain that Υ → 0 as h(l) → 0. Hence, our method is convergent to the solution of the
corresponding DAE.

We compare the two methods for a pendulum with gravity example, and we plot the
infeasibility for both methods in Figure 2. The methods were applied with constant time
step h = 0.1 and run for 1, 000 steps, corresponding to the final time T = 100s. We see that
the velocity drifts off for the unstabilized method, whereas it remains bounded and, in fact,
decreases for our method.

Of course, superior methods exist for DAE, which in particular use projection or some other
type of constraint stabilization. Nevertheless, our method has the following characteristics:

1. When applied to a differential algebraic equation it solves only one linear system per
time step.

2. No additional parameters are needed in order to stabilize the constraints such as the
ones described in [10] and [8].

Therefore, to have a fair comparison, we would need to compare our method to a similar
method, but none seems to exist in the literature. The postprocessing method [7, 9] solves
one additional linear system per step. However, the method can be modified in such a fashion
that it does only one overall factorization per step, and it thus needs only one additional
backward/forward substitution per step compared to our method. Nevertheless, in the case
where the linear system is solved by an iterative technique, the difference may prove significant.
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When applied to DAEs, our method can be interpreted as the limit case of another approach.
We approximate the effect of the equality constraints by using an elastic force that pushes the
configuration toward the feasible manifold. Such an elastic force is generated, for example, by
the potential

1

2
Ck

m∑

i=1

(
Θ(i)(q)

)2

,

where Ck is an appropriately chosen parameter. The force corresponding to this penalty is

FC(q) = −
m∑

i=1

CkΘ(i)(q)∇qΘ
(i)(q),

and the problem does not have any additional constraints.
Assume now that we add this force to the given external force k(t, q, v) and we use the

linearly implicit Euler method to time step. For that, we would have to compute the Jacobian
of FC(q). To maintain the symmetry of the problem, however, we assume that the external
force k(t, q, v) is nonstiff, and we use the following approximated Jacobian for FC(q):

∇qFC(q) ≈ JFC(q) = −
m∑

i=1

Ck∇qΘ(q)(i)∇qΘ(q)(i)
T

= −
m∑

i=1

Ckν
(i)(q)ν(i)T

(q).

Here we use the notation ν(i) = ∇qΘ(q(l)) that was introduced at the beginning of this work.
The time-stepping scheme becomes

Mv(l+1)+h2
m∑

i=1

Ckν
(i)(q(l))ν(i)T

(q(l))v(l+1) = Mv(l)+hk(t(l), v(l), q(l))−h
m∑

i=1

CkΘ(i)(q(l))ν(i)(q(l)).

The matrix of the linear system is positive definite, which now guarantees the existence of a
solution v(l+1) for any h > 0. This observation has been used to adapt this method for stiff
rigid multibody dynamics with contact and friction [2]. To simplify the notation we now ignore
the dependence of all data of the problem on t(l), v(l) and q(l), with the exception of Θ(i).

In the previous equality, we take the part involving Ck to the left side of the inequality, and
we define

c(i)ν = hCk

(
Θ(i) + hν(i)v(l+1)

)
.

Defining c
(i)
ν as a new variable, we obtain the following linear system

Mv(l+1) −∑m

i=1 c
(i)
ν ν(i) = Mv(l) + hk

hν(i)T

v(l+1) + Θ(i)(q(l)) − 1
Ck
c
(i)
ν = 0, i = 1, 2, . . . ,m

q(l+1) = q(l) + hv(l+1).

(5.61)

Assuming that the solution of this system stays bounded, we obtain, as Ck → ∞, the following
system,

Mv(l+1) −
m∑

i=1

c(i)ν ν(i) = Mv(l) + hk

ν(i)T

v(l+1) +
Θ(i)(q(l))

h
= 0, i = 1, 2, . . . ,m (5.62)

q(l+1) = q(l) + hv(l+1),
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which is precisely (5.60). This shows that our method can be seen as the limit case of a penalty-
type method that is treated linearly implicitly. This feature explains to some extent why our
method can stabilize the constraint behavior and why it does not need to tune any parameter
(except, perhaps, the time step) toward that end.

This also shows one possible caveat of the method. If, at some point, one decides that the
constraint error is too large, then one may decide to reduce the time step. If aggresive time
step reduction is done, the right-hand side of (5.62) goes to infinity. It does not seem possible

to guarantee stability in this regime, unless we require that
hl−1

hl
≤ ch, ∀l, the way we did it

in Theorem 4.1. If enforcing such a condition is inconvenient, the method can be adapted to
work by requiring

|Θ(i)(q(l))| ≤ Ch2
l , i = 1, 2, . . . ,m.

Therefore, aggressive time step reduction for such a method should be combined with a
reduction in the amount of infeasibility in the constraint, by using a few iterations of a nonlinear
projection algorithm, to satisfy the above requirement.

6. Numerical Results for Contact Constraints

To validate the concepts introduced in the preceding sections, we applied our method where
v(l+1) is computed by (2.10–2.11) to two two-dimensional examples, and we compared it to
the unstabilized version (which corresponds to the choice ∆ = 0, and Υ = 0 in (2.10–2.11).
We ran both examples for 20 seconds with a time step of 0.05. The mass data corresponds
to a density of 10kg/m2. All computations were done by solving one linear complementarity
problem per step, using PATH [15].

We choose ε̂, the parameter that governs the choice of the active set (4.41), to be equal to
0.3. In the limit of hl → 0, the value of the active set parameter ε̂ is not an issue, as proved
in Theorem 4.1. This parameter does influence the efficiency of the algorithm, however, since
a larger ε̂ means that the size of the LCP (2.10–2.11) will increase. On the other hand, a
smaller ε̂ means that certain collisions may be missed and could result in a large increase of
the infeasibility.

In the first example, we simulate an elliptic body above and on a tabletop. The length of its
axes are 8 and 4. The body is dropped from a height of 8 with respect to its center of mass and
with an angular velocity of 3. The friction coefficient is 0.3. In Figure 3 we present ten frames
of the simulation. In Figure 4 we present a comparison of the constraint infeasibility between
the unstabilized and stabilized version of our algorithm. The benefit of the stabilization is
evident in the figure where the infeasibility is more than 100 times smaller towards the end of
the simulation in the stabilized case compared to the unstabilized case. We also see that in the
stabilized case the infeasibility oscillates in a narrow range without exhibiting a substantial
increase.

In the second example, we simulate the behavior of 21 identical disks of radius 3 on a
horizontal tabletop bounded by two slanted walls, starting from the cannonball arrangement
at 0 velocity (with 6 disks at the bottom). The friction coefficient is 0.2. Four frames of the
simulation are presented in Figure 5.

In Figure 6 we compare the constraint infeasibility between the unstabilized and the
stabilized method. We see that the stabilized method has smaller constraint infeasibility and
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consistently corrects incidental large infeasibility. At the end of the simulation, all disks are
separated, and they are all in contact with the tabletop. The disk on tabletop constraint is
satisfied exactly because it is linear in the region of differentiability (4.40), which explains the
essentially zero infeasibility in both methods toward the end of the simulation time interval.

In both examples we see that constraint stabilization is achieved by our method, whereas
the unstabilized method exhibits a continuous drift in the first example and a larger and more
persistent infeasibility in the second example. We also note that in both examples we were
able to achieve constraint stabilization by solving only one LCP per step with a constant time
step.

7. Conclusions and Future Work

We presented a time-stepping method for rigid multibody dynamics with joints, contact, and
friction that provides geometrical constraint stabilization by solving only one LCP per time
step. The stabilization is achieved by modifying the right-hand side of the LCP as a function of
the infeasibility. In Theorem 4.1 we prove that the velocity sequence stays uniformly bounded
over any finite time interval as the time step goes to 0 and that the geometrical constraint

infeasibility at step l+ 1 is bounded by a term proportional to
∣∣∣∣hlv

(l+1)
∣∣∣∣2. The fact that the

infeasibility is bounded by a local measure of the size of the solution shows that the constraint
stabilization is achieved. The results are validated by comparing the stabilized method with
the unstabilized method on two examples.

To achieve these results, we have made several assumptions that we plan to relax in future
work. In particular, it is important to relax the assumption that the distance functions
are differentiable even on a neighborhood of the feasible set, since many simulations need
polyhedral bodies. The choice of ε̂ also can affect the size of the LCP to be solved, as well as
the geometrical constraint infeasibility, and a promising avenue is to choose it as a function of
the velocities of the bodies involved and of the time step, while guaranteeing that the energy
balance is not destabilized. A question of practical importance is to determine an appropriate
size of γ other than 1 (which is the case for which we obtained results in this work) that would
result in constraint stabilization while using the rule (2.12) to generate the right-hand side in
(2.10). Also of interest to us is to extend these results to the case of elastic or partially elastic
collisions.

Finally, an important question is whether the proof of convergence to the solution of a
differential inclusion as the time step goes to 0 [30] can be extended to this case. Key facts
that are necessary to adapt the proof in [30] have already been proved: that the velocity is
bounded and that the LCP (2.10–2.11) is, at most, an O(h) perturbation of the LCP analyzed
in [30], both of which follow from Theorem 4.1.

APPENDIX

II. Upper Bounds on Sequences Satisfying Recursive Inequalities

Lemma II.1. Consider the nonnegative sequences tn and zn, for 0 ≤ n ≤ N and hn for
0 ≤ n ≤ N−1, where t0 = 0 and tN = T . Here hn satisfies tn+1− tn = hn, for 0 ≤ n ≤ N −1,
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and zn satisfies the inequality

z2
n+1 ≤ z2

n + hnc1(5z
2
n + 2zn) + c2hn, ∀0 ≤ n ≤ N − 1,

where c1 > 0 and c2 > 0 are two real parameters. Let y(t, y0) be the solution of the scalar
differential equation

ẏ = 6c1y + (c1 + c2)

that satisfies y(0, y0) = y0. Then,

1. y(t) satisfies

(a) y(t, x1) ≥ y(t, x2) whenever x1 ≥ x2,
(b) z2

n+1 ≤ y(hn, z
2
n).

2. z2
n ≤ y(tn, z

2
0), for 0 ≤ n ≤ N .

Proof From the differential equation in y(t), we have that

y(t, y0) = y0e
6c1t +

c1 + c2
6c1

(
e6c1t − 1

)

which is obviously an increasing function in y0, which proves Part 1a.

Clearly, y(t, y0) is an increasing function of t whenever y0 ≥ 0. Since z2
n ≥ 0, we can use the

fundamental theorem of calculus to obtain that

y(hn, z
2
n) − z2

n = y(hn, z
2
n) − y(0, z2

n) = hn

dy

dt
(ζ, z2

n) = hn

(
6c1y(ζ, z

2
n) + c1 + c2

)
≥

hn

(
6c1y(0, z

2
n) + c1 + c2

)
= hn

(
6c1z

2
n + c1 + c2

)
,

where 0 ≤ ζ ≤ hn. Since 2zn ≤ z2
n+1, we obtain, from the inequality assumed in the statement

of this Lemma that z2
n+1 satisfies, that

z2
n+1 ≤ z2

n + 6hnc1z
2
n + hn(c1 + c2).

Comparing this with the inequality involving y(hn, z
2
n) above, we immediately get that

y(hn, z
2
n) ≥ z2

n+1, which proves Part 1b.

Finally, we prove Part 2 of the claim by induction. For n = 0, it follows from the definition
of y(t, y0). Assume that the claim is proven for n = k, or that yk ≤ y(tk, z

2
0). Using Part 1b,

and Part 1a together with the induction hypothesis, we obtain that

z2
k+1 ≤ y(hk, z

2
k) ≤ y(hk, y(tk, z

2
0)) = y(tk + hk, z

2
0) = y(tk+1, z

2
0),

which proves the inequality for n = k + 1 and thus the claim. �

Theorem II.2. Consider the nonnegative sequences tn, zn, wn and θn for 0 ≤ n ≤ N and hn

for 0 ≤ n ≤ N − 1, where θ0 = 0, t0 = 0 and tN = T . Here hn > 0 satisfies tn+1 − tn = hn,
for 0 ≤ n ≤ N − 1. Let ci > 0, i = 1, 2, . . . , 5, and ψ1(z, w) a continuous mapping of two real
arguments that is nonnegative whenever z ≥ 0 and w ≥ 0.

Assume the following:

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



28 M. ANITESCU AND G. D. HART

1. Whenever
θn ≤ c5, (II.63)

for some n satisfying 0 ≤ n ≤ N − 1, the following inequalities hold:

z2
n+1 ≤ z2

n + hnc1(z
2
n + wnzn + w2

n + wn + zn) +
c2
2
hn + h2

nψ1(zn, wn) + c4
θ2n
h2

n

(II.64)

wn+1 ≤ wn + c1hnzn+1. (II.65)

2. If, in addition,
c1hnzn+1 ≤ c5, (II.66)

then the following inequality also holds for 0 ≤ n ≤ N − 1:

θn+1 ≤ c3h
2
nz

2
n+1. (II.67)

3. The time steps hn, n = 1, 2, . . . , N − 1 are chosen such that

hn−1

hn

≤ ch, (II.68)

where ch > 0 is a fixed parameter.

Then there exists an H > 0 such that, whenever hn < H, ∀0 ≤ n ≤ N − 1, we have that
(II.63), (II.66) and thus (II.64), (II.65) and (II.67) hold for any 0 ≤ n ≤ N − 1 and that
z2

n ≤ y(tn,max{z0, w0}2) and w2
n ≤ y(tn,max{z0, w0}2), ∀0 < n < N . Here y(t, y0) is the

function defined in Lemma II.1.

Proof
Assume that (II.63) holds and, from the first assumption, that (II.65) holds. Using the fact

that all relevant sequences are nonnegative and taking the square of both sides, we obtain that

w2
n+1 ≤ w2

n + 2hnc1zn+1wn + h2
nc

2
1z

2
n+1 ≤ w2

n + hnc1z
2
n+1 + hnc1w

2
n + h2

nc
2
1z

2
n+1.

Define
qn = max{zn, wn}, (II.69)

for n = 0, 1, . . . , N − 1. Using this in (II.64) and the previous inequality, we obtain that
whenever (II.63) holds, we have that

z2
n+1 ≤ q2n + c1hn(3q2n + 2qn) +

c2
2
hn + h2

nψ1(zn, wn) + c4
θ2n
h2

n

w2
n+1 ≤ q2n + hnc1q

2
n+1 + hnc1q

2
n + h2

nc
2
1q

2
n+1.

Since all terms in these inequalities are nonnegative, using that q2
n ≤ 3q2n + 2qn and that

q2n+1 ≤ max{w2
n, z

2
n}, we obtain that

q2n+1 ≤ q2n + c1hnq
2
n+1 + c21h

2
nq

2
n+1 + c1hn(3q2n + 2qn) +

c2
2
hn + h2

nψ1(zn, wn) + c4
θ2n
h2

n

.

Here we have used that z2
n+1 ≤ a + b1 + c1 and w2

n+1 ≤ a + b2 + c2, where b1 ≥ b2 ≥ 0 and
a, c1, c2 ≥ 0 implies that q2n+1 ≤ a+b1+c1 +c2. Using now in the previous displayed inequality
that

1

1 − a− a2
≤ 1 + 2a, ∀a ∈

[
0,

1

4

]
,
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we obtain that as soon as

c1hn ≤ 1

4
and θn ≤ c5,

we have that

q2n+1 ≤ (1 + 2c1hn)

[
q2n + c1hn(3q2n + 2qn) +

c2
2
hn + h2

nψ1(zn, wn) + c4
θ2n
h2

n

]

≤ q2n + c1hn

(
5q2n + 2qn

)
+
c2
2
hn +

3

2
c4
θ2n
h2

n

+ h2
nψ̂1(zn, wn), (II.70)

where

ψ̂1(zn, wn) = c1c2 + 2c21(3q
2
n + 2qn) +

3

2
ψ1(zn, wn).

Here we used that, whenever we have that c1hn ≤ 1
4 we also have that 1 + 2c1hn ≤ 3

2 . If, in
addition, we have that hnc1zn+1 ≤ c5, then from Assumption 2 we have that

θn+1 ≤ c3h
2
nz

2
n+1 ≤ c3h

2
nq

2
n+1. (II.71)

In the following we use y(t, q), function defined in Lemma II.1, where we use as c1 and c2
the parameters c1 and c2 from this theorem.

Choose now H to be the largest h that satisfies the following inequalities:

c2
4

≥ h max
0≤v,w≤

√
y(T,q0)

ψ̂1(v, w) (II.72)

c2
4

≥ hc4c
2
3c

4
h

3

2
y(T, q0)

2 (II.73)

c5 ≥ h2c3y(T, q0) (II.74)

1

4
≥ hc1 (II.75)

c5 ≥ hc1
√
y(T, q0). (II.76)

We now prove by induction that, with this choice of H , we will have that

θn ≤ c5 (II.77)

q2n ≤ y(tn, q
2
0) ≤ y(T, q20) (II.78)

for all 0 ≤ n ≤ N , whenever

(H1) hn ≤ H for 0 ≤ n ≤ N and

(H2) hn−1

hn
≤ ch for n = 0, 1, 2, . . . , N − 1.

Case n = 0: From our initial assumptions, we have that θ0 = 0, which satisfies (II.77). Using
Lemma II.1, we have that q20 = y(0, q20) ≤ y(T, q20), and thus (II.78) is satisfied.

Case n = na: We now assume that (II.77) and (II.78) hold for n = 1, 2, . . . , na, and we
intend to prove that they also hold for na + 1.

Since (II.78) holds for n = 1, 2, . . . , na, using the property (H1) of the time step sequence,
the definition of qn (II.69), as well as (II.72), we obtain that

hnψ̂(zn, wn) ≤ c2
4
, n = 0, 1, 2, . . . na. (II.79)
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Also, since (II.78) applies for n = 0, 1, 2, . . . , na, we must have that

c1hn−1zn ≤ c1hn−1qn ≤ c1hn−1

√
y(T, q20) ≤ c5

for n = 1, 2, . . . , na, where the last inequality follows from the assumption (H1) as well as
(II.76). By the induction hypothesis, we have that θn ≤ c5, for n = 0, 1, 2 . . . , na. The last
two inequalities ensure then that (II.63) and (II.66), and thus (II.64) and (II.65), hold for
n = 1, 2, . . . , na, and that (II.67) holds for n = 0, 1, 2, . . . , na − 1.

Since (II.67) holds for n = 1, 2, . . . , na − 1, we must have that θn ≤ c3h
2
n−1q

2
n for

n = 1, 2, . . . , na. We thus obtain, using the assumption (H2), that

θ2n
h2

n

=
θ2n
h2

n−1

h2
n−1

h2
n

≤ c23h
2
n−1q

4
n

h2
n−1

h2
n

= c23h
2
nq

4
n

h4
n−1

h4
n

≤ c23h
2
nq

4
nc

4
h,

for n = 1, 2, . . . , na. Using (II.73) and the choice (H1) of H , we obtain that

c4
3

2

θ2n
h2

n

≤ c2
4
hn, n = 1, 2, . . . , na.

Using the last inequality together with (II.79) in (II.70), which holds for n = na because (II.64)
and (II.65) hold, we obtain that

q2n+1 ≤ q2n + c1hn(5q2n + 2qn) + c2hn, n = 0, 1, 2, . . . , na.

Using Lemma II.1, we have that

qna+1 ≤ y(tna+1, q
2
0) ≤ y(T, q20),

which prove (II.78) for n = na + 1. Using (H1) and (II.76), we have that c1hna
qna+1 ≤ c5.

Therefore (II.71) applies, to give us

θna+1 ≤ c3h
2
na
q2na+1 ≤ c5,

where the last inequality follows by using (II.78) for n = na + 1 and (II.74). This shows that
(II.77) holds for n = na + 1, which completes our induction proof, and thus (II.77) and (II.78)
hold for n = 0, 1, 2, . . . , N .

Since we have that qn = max{wn, zn}, and therefore that c1hnzn+1 ≤ c1hnqn+1 ≤ c3 (the
last inequality following from (II.74) and (H1)), we obtain that (II.63), (II.66) and (II.78) hold
for n = 0, 1, 2, . . . , N , which completes the proof, after applying Assumptions 1 and 2 of this
theorem. �
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Figure 1. Two-body interpenetration configuration
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Figure 2. Comparison between our (linearization) method) and the unstabilized (velocity projection)
method.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



34 M. ANITESCU AND G. D. HART

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16
Ellipse Simulation

Figure 3. Ten frames of an ellipse on a tabletop simulation.
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Figure 4. Ellipse simulation: Comparison of the constraint infeasibility between the unstabilized
method and the stabilized method.
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Figure 5. Four frames of a two-dimensional cannonball arrangement simulation involving 21 bodies
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Figure 6. Disks simulation: Comparison of the constraint infeasibility between the unstabilized method
and the stabilized method.
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